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A Proofs
A.1 Proof of the Main Techniques in Section 3
Let
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According to the fact VRg(w*) = 0 and the iterative format (1) of SHB, we have
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where A := V2Rg. Then SHB can be reformulated as
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where T := (1 +ﬁ)II TA 51 and e* := {g Vé%s(w )} We then have
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Using the fact that E(e?, e/) = 0if i # j and E[e’] = 0, Vi, we have
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A.2 Proof of Lemma 1
We need to exploit the eigenvalues of the matrix 7 = [(1 +h )II —A 7(? I} € R2dx2d
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Then we have

det((/\+f—1_—lﬂ)1+7A AOI)ZO = det((A+ T [(1+ B)T—7A)) =0,

If \* is an eigenvalue of A, we just need to consider
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,1.e., the complex number ) satisfying

/\+§:(1+6)—w\*. (10)
Let U := [uy, ug, ..., uy| be the eigenvectors of A, it then holds that

(wi,u;) =0 ifi#j, (11)
since A is symmetric positive definite. It is easy to see that uy, uo, . .., u, are the eigenvectors of (1 + 3)I — vA. Let \; be

the ith eigenvalue of A. With 0 < v < Apin(A), 8= (1 — \/W)Q + pand 0 < p < €, we can derive
(1+B8—9X)? =43 < (1+B—w)* —48<0.

Thus, we define \; and A; as follows
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where i? = —1. Direct calculating gives us
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Therefore, all the eigenvectors of 7 can be written as
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Since 8 = (1 — \/77)% + o, we know that \; # \;, which means the matrix 7 has 2d different eigenvalues. Denote that

From (11), if i # j, we have

A :=Diag(A1, A2, ..., Aa), A:=Diag(Ai,)2,..., ).
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Letu; := Aitti u,:=( =" |, wehave Tu; = \;u;, Tu, = u,. Then we construct the following matrix
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and the matrix U/ is invertible. Then the matrix 7 satisfies
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Further, we have
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‘We are then led to
ITHI| = U U= < Ul lld | - 2d| Amax*, (13)

where Amax = max{\;, \; }1<i<q and we use the fact that |[MN]| p < max{||M| #|N||, |M||N|z}. When 8 = (1 —

VA2 +oand 0 < o < e,
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Direct calculation yields
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From the definition of A, A, we have
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The approximation here is due to that € > 0 is small enough and v = O(e),and 0 < 8 = (1 — \/AV)? + o< 1for0 < p < e.
That means
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Noticing that /3 is very close to 1 and € is very small, we have \; ~ 1, \; ~ 1 and
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Turning back to U and U1, we see that |[U/||r = O(1) and | U~ r = O( \/17”) Substituting the above result into inequality
(13), we have
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where C; > 0 is a constant. The proof is completed.



A.3 Proof of Lemma 2
If 3=1—-0©(y7)and 7 > 1, we have 8 > (1 — ,/77)? when v is small. And (1 + ) — vy~ < 2/ holds, then the equation
(10) has complex roots whose norms are /3. That is, the eigenvalues {)\Z, A; J<i<q of the matrix 7T satisfy
Al Al =VE>1-6(7), 1<i<d.
With such a choice, we still have A &~ A ~ 1. Let £ = (£4,0)T € R2? and & € R? ~ €. Denote ¢ := U1, we then have
E[|T*¢||* = EUARE|® > E|IARE)1? /Il [E = (1 — 00 )PENEP/ U1,

Here, the norm || - || and || - || are taken on the complex domain. Recall the definition of Z/~! in (14) and Assumption 2, we

know
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and [[U~|% = O(||(A — A)~1||?). Then for some Cy > 0, we are arrive at

E[T"¢|* > Ca(1 — 0(y7))*".

A.4 Proof of Lemma 3

Let \; be the ith eigenvalue of A and 0 < 8 < 5y < 1,1 — By > ¢, we can see that
(1+B8—9N)? =48> (1+B—~L)*> —48 > 0.

Thus, we define \; and A; as follows
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Noticed that v = O(e), we have
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The approximation here is due to that «y is small enough and f is not close to 1. That means
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Then we have [[U||p = O(1) and [[U~ ! ||p = O(125- 5 )- On the other hand, the eigenvalues of the matrix 7T satisfy
I+B= M) +VA+B-N)? =48 _ 9\
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Here, we used v = O(¢) and the Taylor expansion for v\;. Then we have
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Now we can derive
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where constants C's, Cy > 0 are independent of k£ and ~.

A.5 Proof of Theorem 1

k _ xp*
Noticed that y* = [ W",Z_l _WW* } . Combing the equation (9) and Lemma 1, it follows
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When 7 is small, Zle(l — /)< W we then proved the result.



A.6  Proof of Theorem 2
Noticing that with Lemma 2, it holds E||7*~%e?||? > Cy(1 — ©(y7))?*~2. Stating from (9), we are then led to

k
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The above equation indicates that
E[w" — w*||? + E[|[w" ! — w2 > 0(* 7). (16)
According to (16), if we set y = O(e), the lower bound is in the order of ©(¢2~7).

A.7 Proof of Theorem 3
Note that the equality (9) still holds. With Lemma 3, we have
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When O(e) and € is small,
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If E[|wf — w*||? < ¢, we then have
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The worst case is then .
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B Experiments

Modal Seed  Algorithm 1 19 31 42 80  Average STDEV
SGD 9223 9233 92.82 92.67 9326  92.66 0.41
ResNet 18 Adam 9121 9131 90.94 9099 9097  91.08 0.17
SHB(B=0.9) 9281 9326 9340 9297 9387 9326 0.41
SHB-DW  92.62 93.67 93.55 93.13 9395  93.38 0.52
SGD 92.84 9276 92.11 9142 91.79  92.18 0.61
ResNe(34 Adam 91.65 9144 91.60 9123 9153  91.49 0.17
SHB(B =0.9) 9358 9344 9251 9252 9270  92.95 0.52
SHB-DW 9343 9372 9336 92.80 92.78  93.22 0.41

Table 2: Supplement to Table 1. Test accuracy (%) of ResNet18 and ResNet34 for CIFAR10 classification, where the models are trained by
SGD, Adam, SHB and SHB-DW algorithms. Each experiment was repeated five times for different seeds.
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Figure 8: Supplement to Table 1. Training of ResNet18 for CIFAR10 classification using SGD, Adam, SHB (5 = 0.9), and SHB-DW. All
the algorithms are run for 200 epochs with a batch size of 256. The initial learning rate for Adam is set to 0.001, while the others are set to
0.1. All algorithms use a decreasing learning rate strategy, i.e., decreasing by a factor of 10 at the 60th, 120th and 180th epochs, respectively.
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Figure 9: Supplement to table 1 and Figure 7. Training of ResNet34 for CIFARI10 classification using SGD, Adam, SHB (8 = 0.9), and
SHB-DW. All the algorithms are run for 200 epochs with a batch size of 256. The initial learning rate for Adam is set to 0.001, while the
others are set to 0.1. All algorithms use a decreasing learning rate strategy, i.e., decreasing by a factor of 10 at the 60th, 120th and 180th

epochs, respectively.
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