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Exploring the Inefficiency of Heavy Ball as Momentum Parameter Approaches 1

A Proofs
A.1 Proof of the Main Techniques in Section 3
Let

yk :=

[
wk −w∗

wk−1 −w∗

]
∈ R2d.

According to the fact∇RS(w
∗) = 0 and the iterative format (1) of SHB, we have

wk+1 −w∗ = wk −w∗ − γ(∇RS(w
k)−∇RS(w

∗)) + β(wk −w∗)− β(wk−1 −w∗)− γ(gk −∇RS(w
k))

= wk −w∗ − γA(wk −w∗) + β(wk −w∗)− β(wk−1 −w∗)− γ(gk −∇RS(w
k)), (8)

where A := ∇2RS . Then SHB can be reformulated as

yk+1 = T yk − γek,

where T :=

[
(1 + β)I− γA −βI

I 0

]
and ek :=

[
gk −∇RS(w

k)
0

]
. We then have

yk+1 = T ky1 − γ

k∑
i=1

T k−iei.

Using the fact that E⟨ei, ej⟩ = 0 if i ̸= j and E[ei] = 0,∀i, we have

E∥yk+1∥2 = E∥T ky1 − γ

k∑
i=1

T k−iei∥2 = E∥T ky1∥2 + γ2
k∑

i=1

∥T k−iei∥2. (9)

A.2 Proof of Lemma 1

We need to exploit the eigenvalues of the matrix T =

[
(1 + β)I− γA −βI

I 0

]
∈ R2d×2d, i.e., the complex number λ satisfying

det
(

(λ− 1− β)I+ γA βI
−I λI

)
= 0.

Then we have

det
(

(λ+ β
λ − 1− β)I+ γA 0

−I λI

)
= 0 =⇒ det((λ+

β

λ
)I− [(1 + β)I− γA]) = 0.

If λ∗ is an eigenvalue of A, we just need to consider

λ+
β

λ
= (1 + β)− γλ∗. (10)

Let U := [u1,u2, . . . ,ud] be the eigenvectors of A, it then holds that

⟨ui,uj⟩ = 0 if i ̸= j, (11)

since A is symmetric positive definite. It is easy to see that u1,u2, . . . ,ud are the eigenvectors of (1 + β)I − γA. Let λi be
the ith eigenvalue of A. With 0 < ν ≤ λmin(A), β = (1−√γν)2 + ϱ and 0 < ϱ≪ ϵ, we can derive

(1 + β − γλi)
2 − 4β ≤ (1 + β − γν)2 − 4β ≤ 0.

Thus, we define λi and λi as follows

λi :=
(1 + β − γλi) +

√
4β − (1 + β − γλi)2i

2
,

λi :=
(1 + β − γλi)−

√
4β − (1 + β − γλi)2i

2
,



where i2 = −1. Direct calculating gives us

T
(

λiui

ui

)
= λi

(
λiui

ui

)
, T

(
λiui

ui

)
= λi

(
λiui

ui

)
.

Therefore, all the eigenvectors of T can be written as{(
λiui

ui

)
,

(
λiui

ui

)}
1≤i≤d

.

From (11), if i ̸= j, we have 〈(
λiui

ui

)
,

(
λiuj

uj

)〉
= 0.

Since β = (1−√γν)2 + ϱ, we know that λi ̸= λi, which means the matrix T has 2d different eigenvalues. Denote that

Λ := Diag(λ1, λ2, . . . , λd), Λ := Diag(λ1, λ2, . . . , λd).

Let ui :=

(
λiui

ui

)
,ui :=

(
λiui

ui

)
, we have T ui = λiui, T ui = ui. Then we construct the following matrix

U := [u1,u2, . . . ,ud,u1,u2, . . . ,ud] =

(
ΛU ΛU
U U

)
,

and the matrix U is invertible. Then the matrix T satisfies

T U = U
[
Λ

Λ

]
=⇒ T = U

[
Λ

Λ

]
U−1. (12)

Further, we have

T k = U

[
Λ
k

Λk

]
︸ ︷︷ ︸

:=Λk

U−1.

We are then led to

∥T k∥ = ∥UΛkU−1∥ ≤ ∥U∥F ∥U−1∥F · 2d|λmax|k, (13)

where λmax = max{λi, λi}1≤i≤d and we use the fact that ∥MN∥F ≤ max{∥M∥F ∥N∥, ∥M∥∥N∥F }. When β = (1 −√
γν)2 + ϱ and 0 < ϱ≪ ϵ,

|λmax| ≤ 1−√γν + ϱ.

Direct calculation yields

U−1 :=

(
U⊤(Λ− Λ)−1 −U⊤(Λ− Λ)−1Λ
−U⊤(Λ− Λ)−1 U⊤(Λ− Λ)−1Λ

)
. (14)

From the definition of Λ,Λ, we have

[(Λ− Λ)−1]i,i = ([Λ− Λ]i,i)
−1 = − 1√

4β − (1 + β − γλi)2
i ≈ − 1

2
√
γλi

i.

The approximation here is due to that ϵ > 0 is small enough and γ = Θ(ϵ), and 0 ≤ β = (1−√γν)2 + ϱ < 1 for 0 < ϱ≪ ϵ.
That means

(Λ− Λ)−1 = Θ(
−i
√
γν

)I.

Noticing that β is very close to 1 and ϵ is very small, we have λi ≈ 1, λi ≈ 1 and

Λ ≈ I, Λ ≈ I.

Turning back to U and U−1, we see that ∥U∥F = O(1) and ∥U−1∥F = Θ( 1√
γν ). Substituting the above result into inequality

(13), we have

∥T k∥ ≤ C1√
γν
· (1−√γν)k,

where C1 > 0 is a constant. The proof is completed.



A.3 Proof of Lemma 2
If β = 1−Θ(γτ ) and τ ≥ 1, we have β ≥ (1−√γν)2 when γ is small. And (1 + β)− γν ≤ 2

√
β holds, then the equation

(10) has complex roots whose norms are
√
β. That is, the eigenvalues {λi, λi}1≤i≤d of the matrix T satisfy

|λi|, |λi| =
√
β ≥ 1−Θ(γτ ), 1 ≤ i ≤ d.

With such a choice, we still have Λ ≈ Λ ≈ I. Let ξ = (ξ1,0)
⊤ ∈ R2d and ξ1 ∈ Rd ∼ E . Denote ξ̄ := U−1ξ, we then have

E∥T kξ∥2 = E∥UΛk ξ̄∥2 ≥ E∥Λk ξ̄∥2/∥U−1∥2F ≥ [1−Θ(γτ )]2kE∥ξ̄∥2/∥U−1∥2F ,
Here, the norm ∥ · ∥F and ∥ · ∥ are taken on the complex domain. Recall the definition of U−1 in (14) and Assumption 2, we
know

E∥ξ̄∥2 = E
∥∥∥[ U⊤(Λ− Λ)−1ξ1
−U⊤(Λ− Λ)−1ξ1

]∥∥∥2 ≥ E∥U⊤(Λ− Λ)−1ξ1∥2 = Tr(U⊤(Λ− Λ)−1ξ1ξ
⊤
1 (Λ− Λ)−1U) = Tr

(
(Λ− Λ)−2Σ

)
,

and ∥U−1∥2F = Θ(∥(Λ− Λ)−1∥2). Then for some C2 ≥ 0, we are arrive at

E∥T kξ∥2 ≥ C2(1−Θ(γτ ))2k.

A.4 Proof of Lemma 3
Let λi be the ith eigenvalue of A and 0 ≤ β ≤ β0 < 1, 1− β0 ≫ ϵ, we can see that

(1 + β − γλi)
2 − 4β ≥ (1 + β − γL)2 − 4β ≥ 0.

Thus, we define λi and λi as follows

λi :=
(1 + β − γλi) +

√
(1 + β − γλi)2 − 4β

2
,

λi :=
(1 + β − γλi)−

√
(1 + β − γλi)2 − 4β

2
.

Noticed that γ = Θ(ϵ), we have

[(Λ− Λ)−1]i,i = ([Λ− Λ]i,i)
−1 =

1√
(1 + β − γλi)2 − 4β

≈ 1

1− β
.

The approximation here is due to that γ is small enough and β is not close to 1. That means

∥(Λ− Λ)−1∥ = Θ(
1

1− β0
), ∥Λ∥ = O(1), ∥Λ∥ = O(1).

Then we have ∥U∥F = O(1) and ∥U−1∥F = Θ( 1
1−β0

). On the other hand, the eigenvalues of the matrix T satisfy

(1 + β − γλi) +
√
(1 + β − γλi)2 − 4β

2
≤ 1− γλi

1− β
+ C3ϵ

2,

Here, we used γ = Θ(ϵ) and the Taylor expansion for γλi. Then we have

|λmax| ≤ 1− γν

1− β
+ C3ϵ

2.

Now we can derive

∥T k∥ ≤ ∥U∥F ∥U−1∥F · 2d|λmax|k ≤ C4(1−
γν

1− β
+ C3ϵ

2)k,

where constants C3, C4 > 0 are independent of k and γ.

A.5 Proof of Theorem 1

Noticed that yk =

[
wk −w∗

wk−1 −w∗

]
. Combing the equation (9) and Lemma 1, it follows

E∥wk+1 −w∗∥2 ≤ E∥yk+1∥2 = E∥T ky1∥2 + γ2
k∑

i=1

∥T k−iei∥2

≤ C2
1

γν
(1−√γν)2k∥y1∥2 + γC2

1σ
2

ν

k∑
i=1

(1−√γν)2k−2i. (15)

When γ is small,
∑k

i=1(1−
√
γν)2k−2i ≤ 1√

γν , we then proved the result.



A.6 Proof of Theorem 2
Noticing that with Lemma 2, it holds E∥T k−iei∥2 ≥ C2(1−Θ(γτ ))2k−2i. Stating from (9), we are then led to

E∥yk∥2 ≥ E∥T ky1∥2 + C2γ
2

k∑
i=1

[1−Θ(γτ )]2k−2i = Θ(γ2−τ ).

The above equation indicates that

E∥wk −w∗∥2 + E∥wk−1 −w∗∥2 ≥ Θ(γ2−τ ). (16)

According to (16), if we set γ = Θ(ϵ), the lower bound is in the order of Θ(ϵ2−τ ).

A.7 Proof of Theorem 3
Note that the equality (9) still holds. With Lemma 3, we have

E∥wK −w∗∥2 ≤ C2
4

(
1− γν

1− β
+ C3ϵ

2
)2K

∥y1∥2 + γ2C2
4σ

2
K∑
i=1

(
1− γν

1− β
+ C3ϵ

2
)2K−2i

.

When Θ(ϵ) and ϵ is small,

γ2C2
4σ

2
K∑
i=1

(
1− γν

1− β
+ C3ϵ

2
)2K−2i

= C2
4σ

2 1− β

ν
γ +O(ϵ2) = O(ϵ).

If E∥wK −w∗∥2 ≤ ϵ, we then have (
1− γν

1− β
+ C3ϵ

2
)2K

= O(ϵ).

The worst case is then

O(
ln 1

ϵ
γν
1−β − C3ϵ2

) = Õ(1− β

ϵν
).



B Experiments

Model
Seed Algorithm 1 19 31 42 80 Average STDEV

ResNet18

SGD 92.23 92.33 92.82 92.67 93.26 92.66 0.41
Adam 91.21 91.31 90.94 90.99 90.97 91.08 0.17

SHB(β = 0.9) 92.81 93.26 93.40 92.97 93.87 93.26 0.41
SHB-DW 92.62 93.67 93.55 93.13 93.95 93.38 0.52

ResNet34

SGD 92.84 92.76 92.11 91.42 91.79 92.18 0.61
Adam 91.65 91.44 91.60 91.23 91.53 91.49 0.17

SHB(β = 0.9) 93.58 93.44 92.51 92.52 92.70 92.95 0.52
SHB-DW 93.43 93.72 93.36 92.80 92.78 93.22 0.41

Table 2: Supplement to Table 1. Test accuracy (%) of ResNet18 and ResNet34 for CIFAR10 classification, where the models are trained by
SGD, Adam, SHB and SHB-DW algorithms. Each experiment was repeated five times for different seeds.
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Figure 8: Supplement to Table 1. Training of ResNet18 for CIFAR10 classification using SGD, Adam, SHB (β = 0.9), and SHB-DW. All
the algorithms are run for 200 epochs with a batch size of 256. The initial learning rate for Adam is set to 0.001, while the others are set to
0.1. All algorithms use a decreasing learning rate strategy, i.e., decreasing by a factor of 10 at the 60th, 120th and 180th epochs, respectively.
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Figure 9: Supplement to table 1 and Figure 7. Training of ResNet34 for CIFAR10 classification using SGD, Adam, SHB (β = 0.9), and
SHB-DW. All the algorithms are run for 200 epochs with a batch size of 256. The initial learning rate for Adam is set to 0.001, while the
others are set to 0.1. All algorithms use a decreasing learning rate strategy, i.e., decreasing by a factor of 10 at the 60th, 120th and 180th
epochs, respectively.
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